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Abstract. The quantization of systems with first- and second-class constraints within the coherent-state
path-integral approach is extended to quantum systems with fermionic degrees of freedom. As in the
bosonic case the importance of path-integral measures for Lagrange multipliers, which in this case are in
general expected to be elements of a Grassmann algebra, is emphasized. Several examples with first- and
second-class constraints are discussed.

1 Introduction

The quantization of constrained systems has recently been
reexamined [1–4] from the point of view of coherent-state
path integrals, which revealed significant differences from
the standard operator and path-integral approaches. The
aim of this contribution is to extend this approach, formu-
lated for bosonic degrees of freedom, to fermionic systems.
That is, we will discuss the generalization of the approach
of [1] to constrained quantum systems with fermionic de-
grees of freedom. As in the bosonic case we will utilize
the (fermion) coherent-state path-integral approach. In
essence the basic idea of inserting projection operators
via proper path-integral measures for Lagrange multipli-
ers is the same as in the bosonic case [1]. Therefore, we will
closely follow the approach of [1] and put more emphasize
on the presentation of various examples with first- as well
as second-class constraints. We will omit a discussion of
the classical version of such systems, that is, the so-called
pseudomechanics [5,6] which is the classical dynamics of
Grassmann degrees of freedom. Also the quantization of
such systems (without constraints) is well discussed in
the literature [7,6]. Note that due to the Grassmannian
nature, the classical dynamics formulated in phase-space
always exhibits second-class constraints which, however,
can easily be removed [6]. For these reasons we will ex-
clusively concentrate our attention on fermionic quantum
systems with operator-valued constraints.

The outline of this paper is as follows. In Sect. 2 we will
review some basic concepts of quantum systems consist-
ing of N fermionic degrees of freedom. In particular, we
discuss several properties of fermion coherent states and
the associated path-integral approach. In doing so we shall
also give a minimal review Grassmann theory. Section 3
is devoted to a general discussion of first-class constraints
including a construction method for projection operators
following [1]. In Sect. 4 several examples with first-class

constraints are discussed. In Sect. 5 we briefly outline the
generalization of the treatment of second-class constraints
of [1] to fermion systems. Section 6 presents a discussion
for a wide range of odd second-class constraints on the
basis of typical examples. Finally, in Sect. 7 we consider
an example of a constrained boson-fermion system.

2 Basic concepts of fermionic degrees
of freedom

2.1 Grassmann numbers

It is well-known that Grassmann numbers may serve as
classical analogues of fermionic degrees of freedom. To be
more explicit, the “classical phase space” of N fermions
may be identified with the Grassmann algebra CB2N over
the field of complex numbers [8,9], which is generated
by the set {ψ̄1, . . . , ψ̄N , ψ1, . . . , ψN} of 2N independent
Grassmann numbers obeying the anticommutation rela-
tions

{ψi, ψj} := ψiψj + ψjψi = 0 ,

{ψi, ψ̄j} = 0 , {ψ̄i, ψ̄j} = 0 .
(1)

This algebra allows for a natural Z2 grading by appoint-
ing a degree (also called Grassmann parity) to all homo-
geneous elements (monomials) of CB2N :

deg
(
ψ̄j1 · · · ψ̄jmψi1 · · ·ψin

)
:=

{
0 for m+ n even
1 for m+ n odd .

(2)
In other words, the even elements of CB2N are commut-
ing and the odd elements are anticommuting numbers. For
further details we refer to the textbooks by Cornwell [8]
and Constantinescu and de Groote [9]. Here we close by
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giving the convention of Grassmann integration and dif-
ferentiation used in this paper:∫

dψ 1 = 0 ,
∫
dψ ψ = 1 ,

d

dψ
1 = 0 ,

d

dψ
ψ = 1 .

(3)
Here ψ stands for any of the 2N generators of CB2N , and
the integration and differentiation operators are treated
like odd Grassmann quantities according to the Z2 grading
(2).

2.2 Fermion coherent states

Throughout this paper we will consider quantum systems
with a finite number, say N , of fermionic degrees of free-
dom which are characterized by annihilation and creation
operators fi and f†

i , i = 1, 2, . . . , N , obeying the canonical
anticommutation relations

{fi, fj} = 0 , {f†
i , f

†
j } = 0 , {f†

i , fj} = δij . (4)

The corresponding Hilbert space is theN -fold tensor prod-
uct of the two-dimensional Hilbert spaces Hi ≡ C

2 for a
single degree of freedom,

H = H1 ⊗ H2 ⊗ · · · ⊗ HN = C
2N

. (5)

A standard basis in this “N -fermion” Hilbert space H is
the simultaneous eigenbasis of the number operators f†

i fi:

f†
i fi|n1n2 . . . nN 〉 = ni|n1n2 . . . nN 〉 , ni = 0, 1 , (6)

where

|n1n2 . . . nN 〉 := |n1〉1 ⊗ |n2〉2 ⊗ · · · ⊗ |nN 〉N (7)

with |n〉i being a vector in the one-fermion Hilbert space
Hi on which the operators fi and f†

i are acting via

fi|0〉i = 0 , fi|1〉i = |0〉i ,
f†
i |0〉i = |1〉i , f†

i |1〉i = 0 .
(8)

Fermion coherent states are defined in analogy to the
canonical (boson) coherent states [10–12]. They qualita-
tively differ, however, from the latter as the basic quanti-
ties labeling these states are not ordinary c-numbers but
rather are odd Grassmann numbers. To be more precise,
they are the generators of the classical phase space CB2N .
For simplicity let us consider in the following discussion
only one fermionic degree of freedom, that is, we set N = 1
and subscripts will be omitted. Then the fermion coherent
states are defined [10–12] as follows:

|ψ〉 := exp{− 1
2 ψ̄ψ}ef

†ψ|0〉 = exp{− 1
2 ψ̄ψ}

(
|0〉 − ψ|1〉

)
.

(9)
The corresponding adjoint states read

〈ψ| := exp{− 1
2 ψ̄ψ}〈0|eψ̄f = exp{− 1

2 ψ̄ψ}
(
〈0| + ψ̄〈1|

)
.

(10)

The normalized states (9) form an overcomplete set in the
one-fermion Hilbert space C2, that is,

〈ψ1|ψ2〉 = exp{− 1
2 ψ̄1ψ1} exp{− 1

2 ψ̄2ψ2} exp{ψ̄1ψ2}
= exp{− 1

2 ψ̄1(ψ1 − ψ2) + 1
2 (ψ̄1 − ψ̄2)ψ2}

(11)
and provide a resolution of the identity 1 via∫

dψ̄dψ |ψ〉〈ψ|

=
∫
dψ̄dψ

[
|0〉〈0| − ψ|1〉〈0| + ψ̄|0〉〈1| − ψ̄ψ1

]
=

∫
dψ̄dψ

[
|0〉〈0| + |1〉〈0|ψ + ψ̄|0〉〈1| + ψψ̄1

]
= 1 .

(12)
In the above we have already made use of a Z2 grading
in analogy to that of Grassmann numbers. That is, we
have appointed even and odd Grassmann degrees to the
fermion coherent states and the operators [11]:

deg(|0〉) = deg(|ψ〉) = deg(〈ψ|) = 0 ,

deg(|1〉) = deg(f) = deg(f†) = 1 ,
(13)

from which follow rules like

ψ|0〉 = |0〉ψ , ψ|1〉 = −|1〉ψ , ψf = −fψ , etc.
(14)

Finally, we mention that the fermion coherent states are
eigenstates of the annihilation and creation operators

f |ψ〉 = ψ|ψ〉 = |ψ〉ψ , 〈ψ|f† = ψ̄〈ψ| = 〈ψ|ψ̄ (15)

and as a consequence the coherent-state matrix element
of a normal-ordered operator G(f†, f) = :G(f†, f) : reads

〈ψ1|G(f†, f)|ψ2〉 = G(ψ̄1, ψ2)〈ψ1|ψ2〉 . (16)

All of the above properties can trivially be generalized to
the case of N > 1 degrees of freedom. In this case the
fermion coherent states are essentially the ordered direct
product of N one-fermion coherent states [12]. For exam-
ple, in the case of two degrees of freedom these fermion
coherent states read

|Ψ〉 := |ψ1〉 ⊗ |ψ2〉
= e−Ψ̄ ·Ψ/2

(
|00〉 + |10〉ψ1 + |01〉ψ2 − |11〉ψ1ψ2

)
,

〈Ψ | := 〈ψ1| ⊗ 〈ψ2|
= e−Ψ̄ ·Ψ/2

(
〈00| + ψ̄1〈10| + ψ̄2〈01| − ψ̄1ψ̄2〈11|

)
,

(17)
where we have set Ψ̄ · Ψ := ψ̄1ψ1 + ψ̄2ψ2. This notation
naturally generalizes to cases with even more fermions, for
example,

〈Ψ ′′|Ψ ′〉 = e−Ψ̄ ′′·Ψ ′′/2 e−Ψ̄ ′·Ψ ′/2 eΨ̄
′′·Ψ ′ , (18)

and we will adopt this obvious generalization throughout
this paper.
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2.3 Fermion coherent-state path integrals

As in the standard canonical case one can represent the
fermion-coherent-state matrix element of the time-evolu-
tion operator exp{−itH} in terms of a coherent-state path
integral [10–12]. For convenience we again consider a quan-
tum system with a single degree of freedom which is com-
pletely characterized by an even normal-ordered Hamil-
tonian H = H(f†, f) = :H(f†, f): . Hence, the coherent-
state matrix element of the evolution operator (or propa-
gator) is given by

〈ψ′′|e−itH |ψ′〉 = 〈ψ′′|e−iεHe−iεH · · · e−iεH |ψ′〉 (19)

where ε := t/N . Inserting the completeness relation (12)
N − 1 times and taking the limit ε → 0, that is N → ∞
such that Nε = t = const., one obtains the time-lattice
definition (ψN := ψ′′, ψ0 := ψ′, ∆ψn := ψn − ψn−1,
∆ψ̄n := ψ̄n − ψ̄n−1)

〈ψ′′|e−itH |ψ′〉

= lim
ε→0

N−1∏
n=1

∫
dψ̄ndψn

N∏
n=1

〈ψn|e−iεH |ψn−1〉

= lim
ε→0

N−1∏
n=1

∫
dψ̄ndψn

N∏
n=1

〈ψn|[1 − iεH]|ψn−1〉

= lim
ε→0

N−1∏
n=1

∫
dψ̄ndψn

N∏
n=1

e−iεH(ψ̄n,ψn−1)〈ψn|ψn−1〉

= lim
ε→0

N−1∏
n=1

∫
dψ̄ndψn

N∏
n=1

exp
{

−1
2
ψ̄n∆ψn

+
1
2
∆ψ̄nψn−1 − iεH(ψ̄n, ψn−1)

}
(20)

for the formal coherent-state path-integral representation
of the propagator

〈ψ′′|e−iHt|ψ′〉 =
∫

Dψ̄Dψ

× exp
{

i
∫ t

0
dτ

[
i
2

(
ψ̄ψ̇ − ˙̄ψψ

)
−H(ψ̄, ψ)

]}
.

(21)

Similar path-integral expressions may also be derived for
other matrix elements of the time-evolution operator [11–
13]. The above path-integral formulation is easily exten-
ded to several fermionic [11] and additional bosonic de-
grees of freedom [13].

The aim of this paper is to find similar path-integral
representations of fermion systems subjected to additional
constraints. In doing so we will closely follow the idea of
[1], which incorporates proper projection operators via
some additional path-integral measure for the Lagrange
multipliers.

3 First-class constraints

The quantum systems under consideration are character-
ized by an even self-adjoint and normal-ordered Hamilton-
ianH(f†, f), where f† and f stand for the set {f†

1 , . . . , f
†
N}

and {f1, . . . , fN}, respectively. The quantum dynamics
generated by this Hamiltonian is assumed to be subjected
to constraints characterized by operator-valued normal-
ordered functions of the fermionic annihilation and cre-
ation operators. Furthermore, we assume that these con-
straints have a well-defined Grassmann parity. Then, in
the general case, we have two sets of constraints. One con-
sists of even operators denoted by

Φa ≡ Φa(f†, f) = :Φa(f†, f) : = Φ†
a , degΦa = 0 , (22)

and enumerated by Latin characters a, b, c, . . .. The other
one consists of odd constraints, for which we will use the
notation

χα ≡ χα(f†, f) = :χα(f†, f) : = χ†
α , degχα = 1 .

(23)
They will be enumerated by Greek letters α, β, γ, . . .. With
these constraints the physical Hilbert space is determined
by the conditions

Φa|ϕ〉phys = 0 , χα|ϕ〉phys = 0 , (24)

for all a and α. Note that here we have assumed that
the constraint operators are self-adjoint. If they are not
self-adjoint we will assume that they appear in pairs such
as (χ, χ†) which in turn allows us to generate self-adjoint
constraints via proper linear combinations like χ+χ† and
iχ− iχ†.

Following Dirac [14] we group the constraints into two
classes. For first-class constraints the above conditions
(24) need to be enforced only initially at t = 0 as the
quantum evolution guarantees that a physical state will al-
ways remain in the physical Hilbert space as time evolves.
If this is not the case there exists at least one constraint
which is of second class.

The above characterization of first-class constraints is
equivalent to the requirement that they obey the following
commutation and anticommutation relations.

[Φa, Φb] := ΦaΦb − ΦbΦa = icabcΦc ,

[Φa, χα] = idaαβχβ , {χα, χβ} = igαβaΦa .
(25)

[Φa, H] = ihabΦb , [χα, H] = ikαβχβ . (26)

In other words, the constraints together with the Hamil-
tonian form a Lie superalgebra [8] defined by the struc-
ture constants c, d, g, h and k. In general these structure
constants could be operator-valued quantities depending
on the fermion operators. Throughout this paper we will,
however, consider only thoses cases where the structure
constants are complex valued numbers. Let us also note
that the first-class constraints alone define a Lie superal-
gebra (25) which is an ideal of the total algebra including
(26). This ideal generates a Lie supergroup (via the usual
exponential map) which in turn would enable us to con-
struct in combination with the associated invariant Haar
measure [15] a proper projection operator in analogy to
the approach of [1]. However, things are much simpler
in this case. In particular, with the help of the last an-
ticommutation relation in (25) one can easily show that
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the first condition in (24), that is, Φa|ψ〉phys = 0 for all
a, implies the second one. In other words, in the case of
first-class constraints the odd constraints are implied by
the even constraints. This argument holds only for the
case when even constraints are present. If this would not
be the case, then the algebra of the constraints reduces to
{χα, χβ} = 0 for all α and β. This algebra, however, does
not have a non-trivial (in)finite-dimensional realization.
Actually, such an algebra implies χα|ψ〉 = 0 for all α and
all ψ ∈ H. Or in other words, the only possible self-adjoint
realization of purely odd first-class constraints are given
by χα ≡ 0, and hence does not represent any constraints.

3.1 The projection operator

Because of the above mentioned properties it suffices to
consider only the ordinary Lie algebra spanned by the even
constraints {Φa} with structure constants cabc. We may
construct a proper projection operator via the invariant
Haar measure of the corresponding Lie group following
[1]. Let us be more explicit. The general group element
generated by the even constraints is given by

exp{−iξaΦa(f†, f)} , (27)

where {ξa} are real group parameters. To be more precise,
(27) is a 2N -dimensional unitary fully reducible represen-
tation of this Lie group in H. For simplicity, we consider
here only the case of a compact group. For the treatment
in cases of non-compact groups see [16]. For a compact
group, let us denote the corresponding invariant normal-
ized Haar measure by dµ(ξ). Then a proper projection
operator may be defined by [17]

E :=
∫
dµ(ξ) exp{−iξaΦa} (28)

which due to the invariance of the Haar measure and
the group-composition law obviously obeys the proper-
ties E = E

2 = E
† of an orthogonal projector. It projects

onto the physical Hilbert space since by construction the
physical states are the eigenstates of E with eigenvalue
one, E |ψ〉phys = |ψ〉phys. Furthermore, we note that

exp{−iξaΦa}E = E (29)

for any set {ξa} and

e−itH
E = E e−itH = E e−itH

E = E e−it(EHE )
E , (30)

which is the (constrained) time-evolution operator in the
physical subspace. As an aside we mention that this op-
erator may be viewed as an element of the Lie group,
associated with the Lie algebra spanned by the Hamilton-
ian and the even constraints, which is averaged over the
subgroup associated with the subalgebra of the even con-
straints. In other words, it is invariant under right and left
multiplication of this subgroup and, hence, belongs to the
corresponding two-sided coset.

Finally, let us mention that the N -fermion Hilbert
space is finite dimensional and, hence, the spectrum of

the constraints is pure point. Therefore, technical difficul-
ties arising from a possible continuous spectrum of the
constraints (see [1]) do not occur.

3.2 Path-integral representations
for the constrained propagator

Let us now construct a path-integral representation for the
constrained propagator, that is, the coherent-state matrix
element of the constrained time-evolution operator (30):

〈ψ′′|e−itH
E |ψ′〉 = 〈ψ′′|e−itHe−iξaΦaE |ψ′〉

=
∫
dψ̄0dψ0 〈ψ′′|e−itHe−iξaΦa |ψ0〉〈ψ0|E |ψ′〉 .

(31)

Making use of the group composition law, which follows
from the algebra of the even constraints, setting again
ε = t/N and inserting the resolution (12) of the identity
we find

〈ψ′′|e−itHe−iξaΦa |ψ0〉

= 〈ψN |
N
←−∏
n=1

(
e−iεHe−iεηa

nΦa

)
|ψ0〉

=
N−1∏
n=1

∫
dψ̄ndψn

N∏
n=1

〈ψn|e−iεHe−iεηa
nΦa |ψn−1〉 ,

(32)

where {ηan} are appropriate real numbers. Taking, as in
Sect. 2.3, the limit ε → 0 one ends up with the following
time-lattice definition of a constrained fermion coherent-
state path integral (notation as in Sect. 2.3 except ψ′ 6=
ψ0)

〈ψ′′|e−itH
E |ψ′〉 = lim

ε→0

N−1∏
n=0

∫
dψ̄ndψn

∫
dµ(ξ)

× exp

{
−

N∑
n=1

[
1
2
ψ̄n∆ψn − 1

2
∆ψ̄nψn−1

+ iεH(ψ̄n, ψn−1) + iεηanΦa(ψ̄n, ψn−1)
]}

×〈ψ0| exp{−iξaΦa(f†, f)}|ψ′〉 .

(33)

Hence, we arrive at the formal path-integral representa-
tion of the constrained propagator

〈ψ′′|e−itH
E |ψ′〉 =

∫
Dψ̄Dψ

∫
dµ(ξ)

× exp
{

i
∫ t

0
dτ

[
i
2
(ψ̄ψ̇ − ˙̄ψψ) −H(ψ̄, ψ)

− ηaΦa(ψ̄, ψ)
]}

exp
{−iξaΦa(ψ̄′, ψ′)

}
.

(34)

Despite the fact that in this path integral the time-depen-
dent real-valued functions {ηa} explicitly appear, which
may be interpreted as Lagrange multipliers, it is com-
pletely independent of them as is clearly shown by the
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left-hand side. Hence, as in [1], we are free to average the
right-hand side over the functions {ηa} with an arbitrary
in general complex-valued measure C(η) which is normal-
ized,

∫ DC(η) = 1. The only requirement we impose on
this measure is, that such an average will introduce at least
one projection operator E to account for the initial value
equation (24). If it puts in two or more of these projection
operators the result will be the same since E

2 = E . Hence,
there are many forms for this measure which will be ad-
missible. For an example see the Appendix. In doing so
we have derived yet another path-integral representation
of the constrained propagator.

〈ψ′′|e−itH
E |ψ′〉 =

∫
Dψ̄Dψ

∫
DC(η) exp

{
i
∫ t

0
dτ

×
[

i
2
(ψ̄ψ̇ − ˙̄ψψ) −H(ψ̄, ψ) − ηaΦa(ψ̄, ψ)

]}
.

(35)
In essence, formulas (33), (34) and (35) resemble the fer-
mionic counter parts of the results (64), (65) and (66) in
[1] where the bosonic case has been studied.

4 Examples of first-class constraints

As we have seen in the above discussion, the treatment of
first-class constraints for fermionic systems is very much
the same as that for bosonic systems [1]. In particular, it
is sufficient to consider only even constraints which are
bosonic in nature. Therefore, we will discuss below only
two examples which demonstrate the minor differences to
the bosonic case.

4.1 First example of first-class constraints

As a simple example with purely even constraints let us
consider an N -fermion system subjected to the even con-
straint

Φ(f†, f) =
N∑
i=1

f†
i fi −M . (36)

Obviously, this constraint fixes the number of fermions
to M ∈ N with M ≤ N . In order to make the effects of
the constraints more transparent we will consider only the
path-integral representation of the coherent-state matrix
element of the projection operator

E =
∫ 2π

0

dξ

2π
e−iξΦ = δΦ,0 = E

2 = E
† , (37)

that is, we will consider a system with a vanishing Ha-
miltonian, H = 0, and limit ourselves to the special case
M = 1, N = 2. Formally, the corresponding path integral
is then given by∫

DΨ̄DΨ
∫

DC(η)

× exp
{

i
∫ t

0
dτ

[
i
2
(Ψ̄ · Ψ̇ − ˙̄Ψ · Ψ) − η(Ψ̄ · Ψ − 1)

]}
(38)

and leads to the coherent-state matrix element (for details
see the Appendix)

〈Ψ ′′|E |Ψ ′〉 = e−Ψ̄ ′′·Ψ ′′/2 e−Ψ̄ ′·Ψ ′/2 Ψ̄ ′′ · Ψ ′ (39)

where we have adopted the short-hand notation of (17).
We leave it to the reader to verify that this matrix element
represents a reproducing kernel in the physical subspace
given by the linear span of the two vectors |01〉 and |10〉:

∫
dΨ̄dΨ 〈Ψ ′′|E |Ψ〉〈Ψ |E |Ψ ′〉 = 〈Ψ ′′|E |Ψ ′〉 , (40)

where dΨ̄dΨ := dψ̄1dψ1dψ̄2dψ2.

4.2 Second example of first-class constraints

As a second example we will now consider a three-fermion
system (N = 3) subjected to one even and two odd con-
straints given by

Φ = 1 − f†
1f1 − f†

2f2 − f†
2f2 + f†

1f1f
†
2f2

+f†
2f2f

†
3f3 + f†

3f3f
†
1f1 ,

χ = f1f2f3 , χ† = f†
3f

†
2f

†
1 .

(41)

These first-class constraints obey the Lie superalgebra

[χ,Φ] = 0 = [χ†, Φ] , {χ, χ†} = Φ , χ2 = 0 = (χ†)2.
(42)

Obviously, the six-dimensional physical subspace is char-
acterized by having at least one empty and one occupied
fermion state. As in the previous example the spectrum
of the even constraint Φ is integer and therefore the pro-
jection operator has the same integral representation.

E =
∫ 2π

0

dξ

2π
e−iξΦ (43)

and can explicitly be expressed in terms of the fermion
number operators

E = f†
1f1(1 − f†

2f2) + f†
2f2(1 − f†

3f3) + f†
3f3(1 − f†

1f1)

= 1 − Φ .
(44)

The path integral for the coherent-state matrix element of
the projection operator formally reads

〈Ψ ′′|E |Ψ ′〉 =
∫

DΨ̄DΨ
∫

DC(η) exp
{

i
∫ t

0
dτ L

}
, (45)

where

L := i
2

(
Ψ̄ · Ψ̇ − ˙̄Ψ · Ψ

)
− η

(
1 − Ψ̄ · Ψ

+ψ̄1ψ1ψ̄2ψ2 + ψ̄2ψ2ψ̄3ψ3 + ψ̄3ψ3ψ̄1ψ1

)
.

(46)
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An explicit path integration then leads to the result

〈Ψ ′′|E |Ψ ′〉 = 〈Ψ ′′|Ψ ′〉
[
Ψ̄ ′′ · Ψ ′ − ψ̄′′

1ψ
′
1ψ̄

′′
2ψ

′
2

−ψ̄′′
2ψ

′
2ψ̄

′′
3ψ

′
3 − ψ̄′′

3ψ
′
3ψ̄

′′
1ψ

′
1

]
= e−(Ψ̄ ′′·Ψ ′′+Ψ̄ ′·Ψ ′)/2

[
Ψ̄ ′′ · Ψ ′ + ψ̄′′

1ψ
′
1ψ̄

′′
2ψ

′
2

+ψ̄′′
2ψ

′
2ψ̄

′′
3ψ

′
3 + ψ̄′′

3ψ
′
3ψ̄

′′
1ψ

′
1

]
.

(47)

5 Second-class constraints

Second-class constraints are all those which are not first
class. For second-class constraints it is not sufficient to
start with an initial state on the physical subspace as in
this case the time evolution generated by the Hamilton-
ian will generally depart from the physical subspace. In
other words, after some short time interval (say ε) one may
have to project the state back onto the physical subspace.
Hence, we are led to consider the constrained propagator

〈ψ′′|E e−it(EHE )
E |ψ′〉

= lim
ε→0

〈ψ′′|E e−iεH
E e−iεH

E · · · E e−iεH
E |ψ′〉

= lim
ε→0

∫ N−1∏
n=1

dψ̄ndψn

N∏
n=1

〈ψn|E e−iεH
E |ψn−1〉 .

(48)

Again we will closely follow the basic ideas used in the
canonical coherent-state path-integral approach [1].
Hence, we start by introducing the unit vectors |ψ〉〉 :=
E |ψ〉/||E |ψ〉|| and set M ′′ := ||E |ψ′′〉||, M ′ := ||E |ψ′〉||.
The path integral for the constrained propagator can then
be rewritten as

M ′′M ′ lim
ε→0

∫ [
N−1∏
n=1

dψ̄ndψn 〈ψn|E |ψn〉
]

×
N∏
n=1

〈〈ψn|e−iεH |ψn−1〉〉
(49)

which admits the following formal path-integral represen-
tation

M ′′M ′
∫

DEµ(ψ̄, ψ)

× exp
{

i
∫ t

0
dτ

[
i〈〈ψ| ddτ |ψ〉〉 − 〈〈ψ|H|ψ〉〉

]}
.

(50)

In terms of the original vectors it reads

M ′′M ′
∫

DEµ(ψ̄, ψ)

× exp

{
i
∫ t

0
dτ

[
i
〈ψ| ddτ |ψ〉
〈ψ|E |ψ〉 − 〈ψ|H|ψ〉

〈ψ|E |ψ〉

]}
.

(51)

Another relation may be obtained by assuming that
the projection operator allows for an integral representa-
tion in terms of the even and odd constraints

E =
∫
dµε(η, λ) e−iε(ηaΦa+λαχα) (52)

where dµε stands for some even Grassmann-valued mea-
sure depending on the real variables ηα and the odd Grass-
mann numbers λα which both may be considered as La-
grange multipliers. Using this relation in the path-integral
expression (48) we find the representation (notation as in
Sect. 2.3 except ψN 6= ψ′′)

lim
ε→0

∫ [
N∏
n=1

dψ̄ndψndµε(ηn, λn)

]
dµε(η0, λ0)

×〈ψ′′|e−iε(ηa
NΦa+λα

Nχα)|ψN 〉

×
N∏
n=1

〈ψn|e−iεHe−iε(ηa
n−1Φa+λα

n−1χα)|ψn−1〉

(53)

which can formally be written as∫
Dψ̄DψDE(η, λ) exp

{
i
∫ t

0
dτ

[
i
2
(ψ̄ψ̇ − ˙̄ψψ)

−H(ψ̄, ψ) − ηaΦa(ψ̄, ψ) − λαχα(ψ̄, ψ)
]}

.
(54)

Here let us remark that we have assumed that the con-
straints are self-adjoint. This is typically not the case for
odd constraints, which then appear in pairs (χ, χ†). As a
consequence the Grassmann-valued Lagrange multipliers
also appear in pairs (λ, λ̄). In contrast to the first-class
constraints, in the present case one cannot neglect the
odd constraints. However, the appearance of Grassmann
multipliers may be omitted at the expense of no longer
having the constraints appear explicitly in the exponent
of (52). Actually, because spec(E ) ⊆ {0, 1} we may always
choose the following simple integral representation of the
projection operator

E =
∫ 2π

0

dη

2π
e−iη(1−E ) . (55)

Again we would like to point out that (48)–(51) are
the fermion counterparts of (104)–(106) of [1], and relation
(54) corresponds to (109) in [1].

6 Examples of second-class constraints

Even fermionic constraints are in essence similar to boso-
nic constraints which have extensively been discussed in
[1]. For this reason we will concentrate our attention in
this section exclusively on odd second-class constraints.
We will start with two simple examples of constraints lin-
ear in fermion operators and then generalize our approach
to an arbitrary set of linear constraints. Based on an ex-
ample of a non-linear odd constraint we will show that all
non-linear diagonal odd constraints can be reduced to the
linear case.

6.1 Linear odd constraints

As mentioned above we will begin our discussion with a
simple, that is N = 1, fermion system which obeys the
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constraints

χ = f − θ , χ† = f† − θ̄ . (56)

Here θ̄, θ ∈ CB2 are odd Grassmann numbers. The con-
straints (56) obey the following anticommutation relations

{χ, χ†} = 1 , χ2 = 0 = (χ†)2 (57)

and, therefore, one cannot impose both constraint condi-
tions

χ|ϕ〉phys = 0 , case A

χ†|ϕ〉phys = 0 , case B
(58)

simultaneously. Such a procedure would clearly lead to
an inconsistent quantum theory. There are several ways
to relax the conditions in order to formulate a consistent
approach. Here we adopt an approach similar to the so-
called holomorphic quantization [6] utilized for bosonic
models with similar constraint inconsistencies. That is,
we will consider only one of the above two conditions to
define a proper physical Hilbert subspace. However, both
possible cases will be discussed for completeness.

6.1.1 Case A

The solution of (58) in case A is obviously given by the
fermion coherent state |θ〉 and the corresponding projec-
tion operator reads

EA = |θ〉〈θ| = χχ† =
∫
dλ̄dλ e−iλ̄χe−iχ†λ

=
∫
dλ̄dλ eλ̄λ/2 e−i(λ̄χ+χ†λ) .

(59)

The diagonal coherent-state matrix element of this oper-
ator, needed for example in evaluating the path integral
(49), is given by

〈ψn|EA|ψn〉 = exp{−(ψ̄n − θ̄)(ψn − θ)} . (60)

Hence, for a normal-ordered Hamiltonian H = H(f†, f)
we arrive at the formal path-integral expressions for the
constrained propagator∫

Dψ̄DψDE(λ̄, λ) exp
{

i
∫ t

0
dτ

[
i
2
(ψ̄ψ̇ − ˙̄ψψ)

−H(ψ̄, ψ) − λ̄(ψ − θ) − (ψ̄ − θ̄)λ
]}

=
∫

Dψ̄Dψ exp
{

i
∫ t

0
dτ

[
i
2
(ψ̄ψ̇ − ˙̄ψψ)

+ i(ψ̄ − θ̄)(ψ − θ) −H(ψ̄, ψ)
]}

.

(61)

Explicit path integration (see Appendix) will then lead to
the final result

〈ψ′′|EAe−it(E AHE A)
EA|ψ′〉 = 〈ψ′′|θ〉〈θ|ψ′〉e−itH(θ̄,θ)

= 〈ψ′′|ψ′〉 exp
{−(ψ̄′′ − θ̄)(ψ′ − θ) − itH(θ̄, θ)

}
.
(62)

6.1.2 Case B

For the second choice (case B) the solution of (58) is given
by a different kind of coherent states defined by [11,13]

|ϕ〉phys = |θ̄) := eθ̄θ/2
(
|1〉 − θ̄|0〉

)
. (63)

In contrast to the even fermion coherent states introduced
in Sect. 2.2, these states are odd. They are eigenstates of
the fermion creation operator and are orthogonal to the
corresponding even states:

f†|θ̄) = θ̄|θ̄) , (θ̄|f = (θ̄|θ , 〈θ|θ̄) = 0 . (64)

For case B the projection operator is given by the orthog-
onal complement of (59)

EB = |θ̄)(θ̄| = χ†χ =
∫
dλ̄dλ eiχ†λeiλ̄χ

=
∫
dλ̄dλ e−λ̄λ/2 ei(λ̄χ+χ†λ) = 1 − EA

(65)

whose diagonal coherent-state matrix element reads

〈ψn|EB |ψn〉 = (ψ̄n − θ̄)(ψn − θ) . (66)

Explicit path integration will then lead to the constrained
propagator

〈ψ′′|EBe−it(E BHE B)
EB |ψ′〉 = 〈ψ′′|θ̄)(θ̄|ψ′〉e−ith(θ,θ̄)

= 〈ψ′′|ψ′〉(ψ̄′′ − θ̄)(ψ′ − θ)e−ith(θ,θ̄) ,
(67)

where h(θ, θ̄) := (θ̄|H|θ̄). Note that for an anti-normal
ordered Hamiltonian H = H(f, f†) we have h(θ, θ̄) =
H(θ, θ̄).

6.1.3 A second example

As a second example of linear constraints let us consider
an N = 2 fermion system subjected to the two odd con-
straints

χ =
1√
2
(f1 − f2) , χ† =

1√
2
(f†

1 − f†
2 ) , (68)

which also obey the algebra (57). In analogy to the previ-
ous example we may again consider two different physical
subspaces according to case A and B in (58).

For case A the physical Hilbert space is the two-dimen-
sional subspace spanned by the fermion number eigen-
states |00〉 and (|01〉 + |10〉)/√2. The corresponding pro-
jection operator is given by EA = χχ† and admits integral
representations as given in (59). The path integral for its
matrix element (for simplicity we consider here the system
H = 0) leads to

〈ψ′′
1ψ

′′
2 |EA|ψ′

1ψ
′
2〉

= 〈ψ′′
1ψ

′′
2 |ψ′

1ψ
′
2〉

[
1 − 1

2 (ψ̄′′
1 − ψ̄′′

2 )(ψ′
1 − ψ′

2)
]

= e−Ψ̄ ′′·Ψ ′′/2 e−Ψ̄ ′·Ψ ′/2 [
1 + 1

2 (ψ̄′′
1 + ψ̄′′

2 )(ψ′
1 + ψ′

2)
]
.

(69)
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In case B we are dealing with the projection operator
EB = 1 − EA = χ†χ and its integral representations
are the same as in (65). This operator projects onto the
orthogonal complement of the previous case, that is, onto
the subspace spanned by |11〉 and (|01〉 − |10〉)/√2. Here
the result of path integration for the coherent-state matrix
element of EB reads

〈ψ′′
1ψ

′′
2 |EB |ψ′

1ψ
′
2〉 = 〈ψ′′

1ψ
′′
2 |ψ′

1ψ
′
2〉 1

2 (ψ̄′′
1 − ψ̄′′

2 )(ψ′
1 − ψ′

2)

= e−(Ψ̄ ′′·Ψ ′′+Ψ̄ ′·Ψ ′)/2

× [
ψ̄′′

1ψ
′
1ψ̄

′′
2ψ

′
2 + 1

2 (ψ̄′′
1 − ψ̄′′

2 )(ψ′
1 − ψ′

2)
]
.

(70)

6.1.4 Generalization

The above discussion may easily be generalized to a set of
diagonal linear second-class constraints obeying the anti-
commutation relations

{χα, χβ} = 0 = {χ†
α, χ

†
β} , {χα, χ†

β} = δαβ , (71)

where α, β ∈ {1, 2, . . . ,M}, M ≤ N . Clearly, for each
α one has two choices for a projection operator, E

(α)
A =

χαχ
†
α or E

(α)
B = χ†

αχα. Therefore, for the total physi-
cal subspace the corresponding projection operator is not
unique and we have to choose one out of the following 2M
possible operators,

E = E
(1)
i1

E
(2)
i2

· · · E (M)
iM

, iα ∈ {A,B} , (72)

leading to 2M pairwise orthogonal 2N−M -dimensional sub-
spaces of the N -fermion Hilbert space H = C

2N

.
In fact, we may be even more general and assume some

non-diagonal linear odd constraints obeying the algebra

{χα, χβ} = wαβ = wβα , wαβ ∈ R . (73)

For simplicity we have chosen here self-adjoint odd second-
class constraints. This system of constraints can easily be
reduced to the above diagonal case. To be explicit, let
D ∈ SO(M) denote the orthogonal matrix which diago-
nalizes the symmetric matrix W , (W )αβ = wαβ . That is,
we choose D such that

(DTWD)αβ = vαδαβ . (74)

Then we may define new constraints via χ′
α =

(DT )αβχβ/
√
vα which are diagonal

{χ′
α, χ

′
β} = δαβ , (75)

and can be treated as discussed above. Note that vα > 0
as we are dealing with second-class constraints.

In essence, the conclusion of this section is, that any
set of linear odd second-class constraints is reducible to
the diagonal case and in turn can be incorporated into
the path integral.

6.2 Nonlinear odd constraints

Let us now consider odd constraints which are not linear in
the fermion operators. Again we will begin our discussion
with an elementary example which is an N = 4 fermion
system with constraints given by

χ = f1 − f2f3f
†
4 , χ† = f†

1 − f4f
†
3f

†
2 . (76)

Note that χ2 = 0 = (χ†)2 as before, however, the anti-
commutator is no longer proportional to the identity. To
be explicit, it is given by

{χ, χ†} = X (77)

where

X := 1 + f2f
†
2f3f

†
3f

†
4f4 + f†

2f2f
†
3f3f4f

†
4 . (78)

Note that spec(X) = {1, 2} and therefore its inverse is
well-defined

X−1 = 1 − 1
2f2f

†
2f3f

†
3f

†
4f4 − 1

2f
†
2f2f

†
3f3f4f

†
4 . (79)

As in the linear case we cannot impose both conditions,
case A and B in (58), simultaneously. Hence, we again have
to choose either case A or B. Which will lead us to two
orthogonal eight-dimensional subspaces of H = C

16. Here,
however, because of the non-linearity of the constraints,
the projection operators are given by

EA = X−1χχ† , EB = 1 − EA = X−1χ†χ . (80)

Note that [X,χ] = 0 = [X,χ†]. In essence, because X > 0
one simply replaces the original constraints by new ones,

χ → χ′ = χ/
√
X , (81)

which by construction are “linear”, i.e., constraints equiv-
alent to linear, and can be treated as shown in the previous
section.

Obviously, this procedure can be generalized to a set
of non-linear diagonal second-class constraints obeying

{χα, χβ} = 0 = {χ†
α, χ

†
β} , {χα, χ†

β} = Xαδαβ (82)

where Xα ≥ 0 does not vanish as χα is assumed to be
second class. Hence, we have Xα > 0 and therefore we
may redefine the odd constraints χα → χ′

α = χα/
√
Xα

which brings us back to the linear case discussed above.

7 Application to Bose-Fermi systems

To complete our discussion we finally consider a system
of M bosons and N fermions. The M bosonic degrees
of freedom are characterized by bosonic annihilation and
creation operators bi and b†i , respectively, which obey the
standard commutation relations

[bi, bj ] = 0 , [b†i , b
†
j ] = 0 , [bi, b

†
j ] = δij . (83)
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These operators act on the M -boson Hilbert space
L2(R)⊗· · ·⊗L2(R) = L2(RM ). As in the case of fermions
we will work in the (boson) coherent-state representation.
These are eigenstates of the annihilation operators

bi|zi〉i = zi|zi〉i , zi ∈ C , |zi〉i ∈ L2(R) , (84)

and for its M -fold tensor product, which represents an M -
boson state, we will use the notation |z〉 = |z1〉1 ⊗ · · · ⊗
|zM 〉M . The total Hilbert space of the combined boson
fermion system is thus H = L2(RM )⊗C

2N

and the boson-
fermion coherent states will be denoted by |zΨ〉 = |z〉⊗|Ψ〉.
The dynamics of such a system is defined by the Hamil-
tonian which we choose to

H := ω

[
M∑
i=1

b†i bi +
N∑
i=1

f†
i fi

]
, ω > 0 . (85)

Note that for M = N this Hamiltonian characterizes a
supersymmetric quantum system [18]. The interaction of
the bosons and fermions is introduced via the even first-
class constraint

Φ :=
M∑
i=1

b†i bi −
N∑
i=1

f†
i fi − p , p ∈ Z , (86)

which fixes the fermion number Nf and the boson number
Nb to obey the equality Nf = Nb − p.

As the spectrum of the constraint is integer we may
use the integral representation (37) for constructing the
projection operator. In this case the coherent-state matrix
element for this operator reads

〈z′′Ψ ′′|E |z′Ψ ′〉

= N
∫ 2π

0

dϕ

2π
eiϕp exp{e−iϕz′′∗ · z′ + eiϕΨ̄ ′′ · Ψ ′} ,

(87)
where the normalization factor is given by

N := exp
{

−1
2

[|z′′|2 + |z′|2 + Ψ̄ ′′ · Ψ ′′ + Ψ̄ ′ · Ψ ′]} .

(88)
Formally, the constrained propagator is represented by the
path integral

〈z′′Ψ ′′|e−itH
E |z′Ψ ′〉 =

∫
Dz∗DzDΨ̄DΨDC(η)

× exp
{

i
∫ t

0
dτ L

}
,

L :=
i
2
(z∗ · ż − ż∗ · z + Ψ̄ · Ψ̇ − ˙̄Ψ · Ψ)

−ω(z∗ · z + Ψ̄ · Ψ) − η(z∗ · z − Ψ̄ · Ψ − p) ,

(89)

and explicit path integration leads to

〈z′′Ψ ′′|e−itH
E |z′Ψ ′〉 = N

∫ 2π

0

dϕ

2π
eiϕp

× exp
{

e−i(ωt+ϕ)z′′∗ · z′ + e−i(ωt−ϕ)Ψ̄ ′′ · Ψ ′
}

= N
∞∑

m1=0

· · ·
∞∑

mM=0

1∑
n1=0

· · ·
1∑

nN=0

δΣN ,ΣM+p

×e−iωt(ΣM+ΣN )

m1! · · ·mM !

×(z′′
1 )m1 · · · (z′′

M )mM (ψ′′
1 )n1 · · · (ψ′′

N )nN

×(z′
1)
m1 · · · (z′

M )mM (ψ′
1)
n1 · · · (ψ′

N )nN

(90)

where we have set ΣM := m1+· · ·+mM , ΣN := n1+· · ·+
nN and the overbar denotes an involution of the Grass-
mann algebra defined by cψ1ψ2 · · ·ψN := c∗ψ̄N · · · ψ̄2ψ̄1.

8 Conclusions

In this paper we have extended the bosonic coherent-
state path-integral approach of constrained systems [1] to
those with fermionic degrees of freedom. As in the bo-
sonic case we find that this approach does not involve
any δ-functionals of the constraints nor does it require
any gauge fixing of first-class or elimination of variables
for second-class constraints. In addition we have shown
that in the case of first-class constraints for fermion sys-
tems it is sufficient to consider only those which have an
even Grassmann parity. In other words, for first-class con-
straints the Lagrange multipliers are ordinary real-valued
functions of time. There is no need to introduce either even
or odd Grassmann-valued multipliers. In this respect first-
class constraints of fermion systems are not much different
than those of boson systems and can be incorporated in
the path-integral approach in the same way. This also ap-
plies to even second-class constraints. It is only in the case
of odd second-class constraints where Grassmann-valued
Lagrange multipliers may appear in the path-integral ap-
proach. For the cases of linear and non-linear diagonal
second-class constraints we have been able to reduce the
problem to the simpler case of linear diagonal odd con-
straints which however does not allow for a consistent
quantum formulation. Here we have adopted a consistent
formulation by imposing only half (case A or B) of the
second-class constraints. If one wants to avoid the appear-
ance of Grassmann-valued Lagrange multipliers at all then
by virtue of relation (55) one can choose for the projection
operators E

(α)
A and E

(α)
B in Sect. 6.1 the simple integral

representations

E
(α)
A =

∫ 2π

0

dη

2π
e−iηχ†αχα , E

(α)
B =

∫ 2π

0

dη

2π
e−iηχαχ

†
α .

(91)
This procedure in effect amounts to replacing the odd
second-class constraints χα and χ†

α by the even constraints
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Φ
(α)
A := χ†

αχα and Φ
(α)
B := χαχ

†
α , respectively. Note that

from (71) it immediately follows that for α 6= β

[Φ(α)
A , Φ

(β)
A ] = 0 , [Φ(α)

A , Φ
(β)
B ] = 0 , [Φ(α)

B , Φ
(β)
B ] = 0 .

(92)
In other words, these even constraints are first class. So we
finally conclude that any odd first-class constraint and a
wide range (linear and diagonal non-linear) of odd second-
class constraints appearing in fermion systems can be com-
pletely avoided within the approach presented in this pa-
per.
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Appendix

In this appendix we will present the explicit path-integral
evaluations of two examples discussed in the main text.
The first one is for the system considered in Sect. 4.1 whose
formal path integral is given in (38). As measure for the
Lagrange multipliers we choose

DC(η) = lim
ε→0

N∏
n=1

dηn δ(ηn)
dξ

2π
〈Ψ0|e−iξΦ|Ψ ′〉 (A.1)

which is normalized (in the η’s) and also introduces a pro-
jection operator at τ = 0. Hence, the time-lattice path
integral which we want to evaluate reads

lim
ε→0

N−1∏
n=0

∫
dΨ̄ndΨn

∫ 2π

0

dξ

2π

× exp

{
−

N∑
n=1

[
1
2
Ψ̄n ·∆Ψn − 1

2
∆Ψ̄n · Ψn−1

]}

×〈Ψ0|e−iξΦ|Ψ ′〉 .

(A.2)

Using the convolution formula∫
dΨ̄ndΨn e−Ψ̄n+1·∆Ψn+1/2+∆Ψ̄n+1·Ψn/2

×e−Ψ̄n·∆Ψn/2+∆Ψ̄n·Ψn−1/2

= e−Ψ̄n+1·(Ψn+1−Ψn−1)/2e(Ψ̄n+1−Ψ̄n−1)·Ψn−1/2 ,

(A.3)

which follows from the completeness relation
∫
dΨ̄ndΨn

〈Ψn+1|Ψn〉〈Ψn|Ψn−1〉 = 〈Ψn+1|Ψn−1〉 and (11), the path
integral can be reduced to∫

dΨ̄0dΨ0

∫ 2π

0

dξ

2π

× exp
{

−1
2
Ψ̄N · (ΨN − Ψ0) +

1
2
(Ψ̄N − Ψ̄0) · Ψ0

}
×eiξ〈Ψ0|e−iξ(f†1 f1+f

†
2 f2)|Ψ ′〉 .

(A.4)

The coherent-state matrix element appearing in the above
expression is given by

〈Ψ0|e−iξ(f†1 f1+f
†
2 f2)|Ψ ′〉 = e−Ψ̄0·Ψ0/2e−Ψ̄ ′·Ψ ′/2

× [
1 + e−iξΨ̄0 · Ψ ′ − e−2iξψ̄1ψ̄2ψ̄

′
1ψ̄

′
2
]
,

(A.5)

where we have used the notation |Ψ ′〉 = |ψ′
1〉 ⊗ |ψ′

2〉 and
〈Ψ0| = 〈ψ1|⊗〈ψ2|. The remaining integrations are straight-
forward and lead to∫

dΨ̄0dΨ0 exp
{

−1
2
Ψ̄ ′′ · Ψ ′′ − 1

2
Ψ̄ ′ · Ψ ′

}

× exp
{
(Ψ̄ ′′ − Ψ̄0) · Ψ0

}
Ψ̄0 · Ψ ′

= exp
{

−1
2
Ψ̄ ′′ · Ψ ′′ − 1

2
Ψ̄ ′ · Ψ ′

}
Ψ̄ ′′ · Ψ ′

(A.6)

which is the result presented in (39). The evaluation of
the path integral for the second example of first-class con-
straints (see Sect. 4.2) is similar to that above.

As an example for an explicit path-integral calculation
with second-class constraints we choose case A of the lin-
ear odd constraint in Sect. 6.1.1. In this case the projection
operator is given by EA = |θ〉〈θ| and the corresponding
formal path integral (61) reads in the time-lattice formu-
lation (48)

lim
ε→0

∫ N−1∏
n=1

dψ̄ndψn

× exp

{
i
N∑
n=1

[
i
2
ψ̄n(ψn − θ) − i

2
(ψ̄n − θ̄)θ

+
i
2
θ̄(θ − ψn−1) − i

2
(θ̄ − ψ̄n−1)ψn−1 − εH(θ̄, θ)

]}
,

(A.7)
where we have made use of the explicit form of the con-
strained short-time propagator

〈ψn|EAe−iεH
EA|ψn−1〉

= exp
{

−1
2
ψ̄n(ψn − θ) +

1
2
(ψ̄n − θ̄)θ

}

× exp
{

−1
2
θ̄(θ − ψn−1) +

1
2
(θ̄ − ψ̄n−1)ψn−1

}

×e−iεH(θ̄,θ) .
(A.8)

Rearranging the sum in the exponent the above path in-
tegral takes the simple form

e−ψ̄′′(ψ′′−θ)/2e(ψ̄′′−θ̄)θ/2e−θ̄(θ−ψ′)/2e(θ̄−ψ̄′)ψ′/2e−itH(θ̄,θ)

× lim
ε→0

N−1∏
n=1

[∫
dψ̄ndψne(ψ̄n−θ̄)(θ−ψn)

]
.

(A.9)
The remaining N −1 integration are easily evaluated pro-
viding N−1 factors of unity. Hence, we arrive at the result
given in (58). The results (67), (69) and (70) given in the
main text are derived in a similar fashion.



G. Junker, J.R. Klauder: Coherent-state quantization of constrained fermion systems 183

References

1. J.R. Klauder, Coherent State Quantization of Constraint
Systems, Ann. Phys. (N.Y.) 254 (1997) 419-453

2. J.R. Klauder, Coherent State Path Integrals for Systems
with Constraints, in: V.S. Yarunin and M.A. Smondyrev
eds., Path Integrals: Dubna ’96, (Joint Institut for Nu-
clear Research, Dubna, 1996) 51-60 and preprint quant-
ph/9607019

3. J.R. Klauder, New Measures for the Quantization of Sys-
tems with Constraints, preprint quant-ph/9607020

4. J.R. Klauder, Quantization of Systems with Constraints,
preprint quant-ph/9612025

5. J.L. Martin, Generalized classical dynamics, and the
‘classical analog’ of a Fermi oscillator, Proc. Roy. Soc.
London A 251 (1959) 536-542; R. Casalbuoni, The Classi-
cal Mechanics for Bose-Fermi Systems, Il Nuovo Cimento
33 A (1976) 389-431

6. M. Henneaux and C. Teitelboim, Quantization of Gauge
Systems, (Princeton Univ. Press, Princeton, 1992)

7. R. Casalbuoni, On the Quantization of Systems with
Anticommuting Variables, Il Nuovo Cimento 33 A (1976)
115-125

8. J.F. Cornwell, Group Theory in Physics, Volume 3, (Aca-
demic Press, London, 1989)

9. F. Constantinescu and H.F. de Groote, Geometrische
und algebraische Methoden der Physik: Supermannig-
faltigkeiten und Virasoro-Algebren, (Teubner, Stuttgart,
1994)

10. J.L. Martin, The Feynman principle for a Fermi system,
Proc. Roy. Soc. London A 251 (1959) 543-549

11. Y. Ohnuki and T. Kashiwa, Coherent States of Fermi
Operators and the Path Integral, Prog. Theor. Phys. 60
(1978) 548-564

12. J.R. Klauder and B.-S. Skagerstam, Coherent States,
(World Scientific, Singapore, 1985)

13. H. Ezawa and J.R. Klauder, Fermions without Fermions,
Prog. Theor. Phys. 74 (1985) 904-915

14. P.A.M. Dirac, Lectures on Quantum Mechanics, (Belfer
Graduate School of Science, Yeshiva Univ., New York,
1964)

15. D. Williams and J.F. Cornwell, The Haar integral for Lie
supergroups, J. Math. Phys. 25 (1984) 2922-2932

16. As an example of a constraint generating a non-compact
group let us suppose that the constraint Φ has a pure point
spectrum including zero which is the subspace of interest.
Then the quantity E =

∫ ∞
−∞ dξ sin(δξ)

πξ
eiξΦ leads us to a

projection operator E = E (−δ < Φ < δ). For δ being
smaller than the gap to the closed discrete level then E is
a projection operator onto the subspace where Φ = 0 as
desired. Note that the above formula does not make use
of any spectral regularity and covers, e.g., the case of Φ =
N1 +

√
2 N2, where spec(N1) = spec(N2) = {0, 1, 2, . . .}.

For a dense spectrum of Φ, which would, e.g., arise for
Φ = −N1 +

√
2 N2, we refer to the discussion in [3]

17. Actually, this operator projects onto the invariant sub-
space carrying the trivial representation. See, for exam-
ple, pp. 177–178 in: A.O. Barut and R. Raczka, Theory
of Group Representation and Applications, (Polish Scien-
tific Publ., Warzawa, 1980)

18. H. Nicolai, Supersymmetry and spin systems, J. Phys. A
9 (1976) 1497-1506


